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1.	 Introduction
Research studies on various types of topology for distribution static compensator (DSTATCOM) are gaining more 
and more attention due to its attractive features in the power distribution system (PDS) application. So, the design 
of an improved version of DSTATCOM for the power quality (PQ) control is forecasted to obtain reduced inverter 
capacity and cost. Also, this discussion is accompanied by consideringthe new evolution of current systems due to 
growing capacity and service-aware demand, etc.(Bayu, 2020; Chilipi et al., 2017; Mangaraj, 2021; Mangaraj et al., 
2022a). Though, active filtering using DSTATCOM or D-STATCOM is normally adopted to work out grid harmonic 
pollution. Still, various types of designs, such as I-DSTATCOM, D-SVC-DSTATCOM and I-SVC-DSTATCOM are 
considered for the betterment of power delivery,which is deemed highly essential (Sabat et al., 2021;  et al., 2016; 
Zhao et al., 2017). Due to the high effectiveness, accuracy, superiority and feasibility, an improved version of 
DSTATCOM, I-SVC-DSTATCOM has been carried out as a proposed approach to investigate the performance by 
extensive research. Hence, the research is going on for analysis of the design of new topology to survive under 
different loading situationsto maintain healthy PDS with PQ indices as per IEEE-519-2014 guidelines (Lu et al., 
2018; Wang et al., 2019). Therefore, the robustness of theproposed DSTATCOM is regarded as a new challenge.

In this research work, using Static VAR Compensator (SVC) and DSTATCOM by coupling each other with 
the coupling transformer provides better PQ by mitigating the Total Harmonic Distortion (THD) in the distribution 
system. To improve PQ with better voltage regulation, unit power factor (p.f.), harmonic reduction, high consistency, 
reduced cost, low loss, and better performance, it is pertinent to choose the SVC-Coupled DSTATCOM; as a result, 
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coupling of SVC and DSTATCOM has been raised as a research point for the researchers (Sabat et al., 2022a; 
Wang et al., 2017a).Based on the above analysis, this paper aims to investigate the stability of SVC-supported 
DSTATCOM under different loading conditions.

By providing some triggering pulses to the SVC the current flowing to the anti-parallel thyristors shown in the 
SVC part will not be controlled dynamically,and so some inductors are connected to each anti-parallel thyristor part 
to control the system (Sabat et al., 2022b; Wang et al., 2017b). The SVC part can relentlessly provide reactive 
power to maintain the stability of the transmission. All the electrical loads will produce the reactive power and 
they will absorb too. The reactive power balance in the grid will vary slowly because the transmitted load varies 
significantly from hour to hour. So, to dampen the power oscillations, the SVC in the transmission system plays a 
very significant role. The load currents are mainly collected or extracted from the PCC (Mangaraj, 2021; Mangaraj 
et al., 2022b; Mangaraj et al., 2022c; Puhan et al., 2021; Sabat et al., 2021; Wang et al., 2017c; ZangenehBighash 
et al., 2018).So, here Voltage Source Inverter (VSI) or DSTATCOM is the main custom power device that can be 
used for the mitigation of the harmonics and other PQ issues to get a reliable power supply from the power system. 
The foremost objective of DSTATCOM is to control the flow of the reactive power. Furthermore, the conventional 
DSTATCOM and SVC coupled Hybrid DSTACOM using Jordan Least Mean Square (JLMS) control technique is 
tested under unbalanced loading with a response time from 0.6 s to 0.7 s and compared based on PQ issues and 
DC-link voltage reduction. The mathematical expressions that are included in this topology are very important and 
play a crucial role in the mitigation of PQ issues. So, by implementingthe JLMS Algorithm, we can enhance the PQ 
of PDS.

The organisation of this paper is as follows: Section 2 describes the distribution systems including the controllers. 
In Section 3, the JLMS control algorithm is discussed. Section 4 presents the shunt-related PQ issues and Simulink 
results of topologies are presented. In Section 5, the conclusions are presented.

2.	 Circuit Description of SVC Coupled Hybrid DSTATCOM
The shunt harmonic current compensation in 3-phase 3-wire PDS using SVC-Coupled Hybrid DSTATCOM is 
illustrated in Figure 1. In Figure 1, the SVC coupled with the conventional DSTATCOM is used for the elimination of 
the THD.The signals for the switching devices of the inverters are produced by the JLMS control techniques, and 
the detailed control strategy is described below in Section-3.

3.	 Design of Control Strategy
The proposed JLMS uses a supervised neural network structure but has trained the data by using the recurrent 
learning principle. The JLMS uses the product of the sum of input components having the linear summation of a 
single hidden layer and the product of processing units at the output layer, instead of the sum of the product of 
inputs as in other networks. The three-phase current ,  ,  la lb lci i i  and in-phase unit voltage template , ,  pa pb pcu u u  
which are considered as the nth input to the input layer. Here, a&γ are chosen as feedback gains. The notation ow  
and ( 1)paw n −  are used for initial and previous weight respectively (Makkar et al., 2018; Nayak et al., 2014; Şen et 
al., 2020). Finally, ,  ,  pa pb pcw w w  are considered as the updated weight. The generalisation of updated weight can 
be trained by using the aforementioned input factor using a suitable learning principle which is presented below 
and depicted in Figure 2. The JLMS control technique is deployed to enhance the PQ of PDS and reduce the 
computational complexities which generally occur in the conventional system. The significant harmonics reduction 
and p.f.improvement are achieved using the proposed system.

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( )1 1pa o pa pa la pa pa paw n w w n u n i n w n u n u nag− + −+= � (1)

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1 1pb o pb pb lb pb pb pbw n w w n u n i n w n u n u nag− + − −+= � (2)

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1 1pc o pc pc lc pc pc pcw n w w n u n i n w n u n u nag− + − −+= � (3)
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Fig. 1. Circuit Configuration of PDS with SVC coupled Hybrid DSTATCOM.DSTATCOM, distribution static compensator; JLMS, Jordan least mean 
square; PDS, power distribution system; SVC, static VAR compensator; VSI, voltage source inverter.

Similarly, the extraction of weighting values of fundamental reactive component of load current ( , , )qa qb qcw w w  
can be calculated as:

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1 1qa o qa qa la qa qa qaw n w w n u n i n w n u n u nag− + − −+= � (4)

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1 1qb o qb qb lb qb qb qbw n w w n u n i n w n u n u nag− + − −+= � (5)

	 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1 1qc o qc qc lc qc qc qcw n w w n u n i n w n u n u nag− + − −+= 	 (6)

The mean values of weighting values ( )aw  of phase ‘a’, ‘b’ and ‘c’ active component is calculated as follows:

	
 

3
pa pb pc

a
w w w

w
+ +

= 	 (7)

Similarly, the mean value of weighting values ( )rw  of phase ‘a’, ‘b’ and ‘c’ reactive components is calculated as 
follows:

	 3
qa qb qc

r
w w w

w
+ +

= 	 (8)
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The in-phase unit voltage templates ( , , )pa pb pcu u u  are the relation of phase voltages & amplitude of PCC voltage 
( )tv  estimated as follows:

	
 , ,sa sb sc

pa pb pc
t t t

v v vu u u
v v v

= = = 	 (9)

The quadrature unit voltage templates ( , , )qa qb qcu u u  are the relation of phase voltages as follows:

	

3 3
 , , 

3 2 3 2 3
pb pc pa pb pc pa pb pc

qa qb qc
u u u u u u u u

u u u
− +− −+ +

= = = 	 (10)

Where tv  can be expressed as

	

( )2 2 22

3
sa sb sc

t

v v v
v

+ +
= 	 (11)

The difference between reference DC voltage and sensed DC voltage is the error in DC voltage de(v ) can be 
expressed as

	 ( ) de dcdc refv v v−= 	 (12)

This difference is processed through the proportional-integral (PI) controller to control the constant DC bus 
voltage. The output of the PI controller can be expressed as

	 cp pa de ia dew k v k v dt∫= + 	 (13)

The sum of the output of the PI controller and the average magnitude of the active component of load currents 
is the total active components of the reference source current can be expressed as

	 sp a cpw w w= + 	 (14)
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Fig. 2. JLMS control for VSI switching. JLMS, Jordan least mean square; PI, proportional-integral; VSI, voltage source inverter.
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The difference between reference ac voltage and sensed amplitude of ac bus voltage is the error in ac voltage 
( )tev  can be expressed as

	 ( )   te tt refv v v−= 	 (15)

This difference is processed through the PI controller to maintain the constant ac bus voltage. The output of the 
PI controller can be expressed as

	 cq pr te ir tew k v k v dt∫= + 	 (16)

The difference between the output of the PI controller and the average magnitude of the reactive component of 
load currents is the total reactive components of the reference source current can be expressed as;

	 sq r cqw w w−= 	 (17)

Three-phase instantaneous reference source active components are estimated by multiplying in phase unit 
voltage template and active power current component and these are obtained as

	 , , aa sp pa ab sp pb ac sp pci w u i w u i w u= = = 	 (18)

Similarly, three-phase instantaneous reference source reactive components are estimated as

	 , , ra sq qa rb sq qb rc sq qci w u i w u i w u= = = 	 (19)

The summation of active and reactive components of current is called reference source currents and these are 
obtained as

	
* * *, , sa aa ra sb ab rb sc ac rci i i i i i i i i= + = + = + 	 (20)

Both actual source currents ( , , )sa sb sci i i  and the reference source currents ( )* * *, ,sa sb sci i i  of the respective phases 
are compared then current error signals are fed to a Hysteresis current controller (HCC). Their outputs are used 
to feed the insulated-gate bipolar transistors (IGBTs) s1 to s6 of the VSI (Voltage Source Inverter) served as a 
DSTATCOM.

4.	 Results Discussion
In this section, using the MATLAB/Simulink tool, the performance of VSI-based DSTATCOM and SVC Coupled 
Hybrid DSTATCOM are examined. The system’s parameters are shown in Table 1. Unbalanced loading conditions 
are used for operating the DSTATCOM and SVC-supported Hybrid DSTATCOM. Through efficient reactive 
power compensations and harmonic current compensation, the Hybrid DSTATCOM raises PQ. Unbalanced 
loads are connected to the PCC of PDS to show the techniques’ resiliency. All the simulation waveforms are 
captured with the simulation step size 1s using discrete simulation type where atustin type solver is used for 50 
ms sample time.

4.1.  Performance of DSTATCOM under an unbalanced condition
The performance of the traditional DSTATCOM is verified under an unbalanced load using the JLMS controller 
in this subsection. The system is initially run at 230V without Coupling DSTATCOM at PCC (Point of Common 
Coupling) and it is noticed that the load side THD is 19.45%. Before compensation, the load side distortion and 
source side are identical. The source side THD is measured at 4.55%when the DSTATCOM is switched ON. The 
performance of the compensator observed during unbalanced load from 0.6 s to 0.7 s, is presented in Figure 3. 
The FFT (Fast Fourier Transform) analysis of source current and load current are presented in Figure 4(i) and 4(ii). 
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The maximum DC link voltage is observed at 680V from the simulation results. The characteristics of source 
voltage, source current, load current, compensator current, and DC-link voltage utilising JLMS controller with RL 
(Resistance and Inductance) load are shown in Figure 3. Here, the traditional DSTATCOM is tested with an RL 
load using the JLMS controller.

Parameters Magnitude

AC Proportional controller (Kpr) 0.2

3-phase voltage (vs) 230 V

DC link capacitor (Cdc) 2,000 mF

DC Proportional controller (Kpa) 0.01

DC link voltage (vdc (ref)) 700 V

DC Integral controller (Kia) 0.05

Fundamental frequency (fs) 50 Hz

Resistance (Rc) 0.25 W
Inductance (Ls) 2 mH

Resistance (Rs) 0.5 W
Inductance (Lc) 1.5 mH

Inductance (Ll) 20 mH

Resistance (Rl) 10 W
Switching frequency 15 kHz

IGBT dead time 2 ms

Transformer 3 KVA, 415 V

SVC inductor value 5 mH

IGBT, insulated-gate bipolar transistor; SVC, Static VAR Compensator.

Table 1.  Parameters magnitude for testing the proposed system.
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4.2.  FFT Analysis

4.3.  Performance of SVC coupling Hybrid DSTATCOM under an unbalanced condition
The performance of the suggested Hybrid SVC coupling DSTATCOM is verified under an unbalanced load using 
the JLMS controller in this subsection. The system is initially run at 230V without Coupling DSTATCOM at PCC and 
it is noticed that the load side THD is 19.76%.

Before compensation, the load side distortion and source side are identical. The source side THD is measured 
at 3.25%when the DSTATCOM is switched ON. The performance of the Hybrid compensator observed during 
unbalanced load from 0.6 s to 0.7 s, is presented in Figure 5. The FFT analysis of source current and load current 

 
Fig. 4.  (i) FFT analysis of DSTATCOM Source current THD. (ii). FFT analysis of DSTATCOM Load current THD.DSTATCOM, distribution static 
compensator; THD, total harmonic distortion.
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are presented in Figure 6(i) and 6(ii). The maximum DC link voltage is observed at 620V from the simulation results. 
The characteristics of source voltage, source current, load current, compensator current, and DC-link voltage 
utilising JLMS controller with RL load are shown in Figure 5. The bar chart analysis is shown in Figure 7 and the 
comparative analysis among different parametersof both topologies are arranged in Table 2. Here, the proposed 
Hybrid DSTATCOM is tested with an RL load using the JLMS controller and shows its effectiveness better compared 
to the traditional one.

4.4.  FFT Analysis

Fig. 6.  (i) FFT analysis of Hybrid DSTATCOM Source current THD. (ii) FFT analysis of Hybrid DSTATCOM Load current THD.DSTATCOM, distribution 
static compensator; THD, total harmonic distortion.
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Topology THD%(supply current) DC-link voltage Power factor

Hybrid DSTATCOM 3.25% 620V 0.875

DSTATCOM 4.55% 680V 0.891

DSTATCOM, Distribution Static Compensator; THD, Total Harmonic Distortion.

Table 2.  Performance parameter.
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5.	 Conclusion
This study successfully examined the performance of HybridDSTATCOM under PQ improvement. The inference 
from the simulation results of Hybrid DSTATCOM satisfiesthe benchmark value of the IEEE-519-2014standard. 
From the above analysis, it is observed that the proposed Hybrid DSTATCOM has superior and robust control ability 
for providing a better PQ solution over traditional DSTATCOM.Also, it can be expected that the JLMS controller 
will be a suitable measure for providing a better PQ solution in the PDS for various choices of loading conditions. 
Hence, the presented results can be considered as the promising performance of SVC coupled Hybrid DSTATCOM 
usingthe JLMS control technique for future distributed demand-side management and distributed generation 
systems. To achieve better PQ control, the proposed JLMS can be also modified, which is further applied to other 
applications.
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